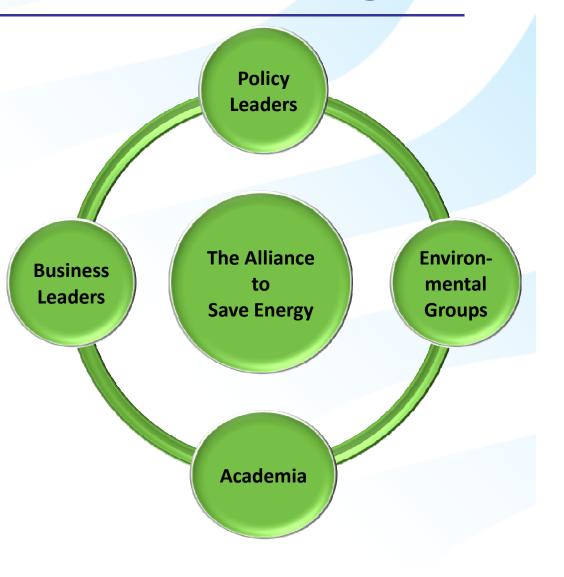
Energy Efficiency Opportunities and Challenges in Water Supply System

Pradeep Kumar

12th August, 2013, Puducherry

Energy and Resource Efficiency in Urban Water Management Organised by CSE, New Delhi


What is the Alliance to Save Energy?

Mission:

 To promote energy efficiency worldwide to achieve a healthier economy, a cleaner environment, and greater energy security.

Organization:

- Non-profit organization with HQ in U.S.; operations world-wide
- Staffed by 80+ professionals

Who is the Alliance to Save Energy?

- Established in 1977
- Non-Profit
- A leader in energy efficiency in all sectors:
 - municipal industry
 - utilities
- appliances
- research policy

- buildings
- transportation
- education
- federal government (e.g., FEMP)
- Experience in more than 35 countries
- Office in India (Bangalore) for more than a decade

The Alliance's Municipal EE Experience - India

- Tamil Nadu
- Karnataka
- Andhra Pradesh
- Madhya Pradesh
- Maharashtra
- Gujarat

- Delhi Jal Board (DJB)
- Municipal Corporation of Greater Mumbai (MCGM)
- Vishakhapatnam MC
- Pune MC

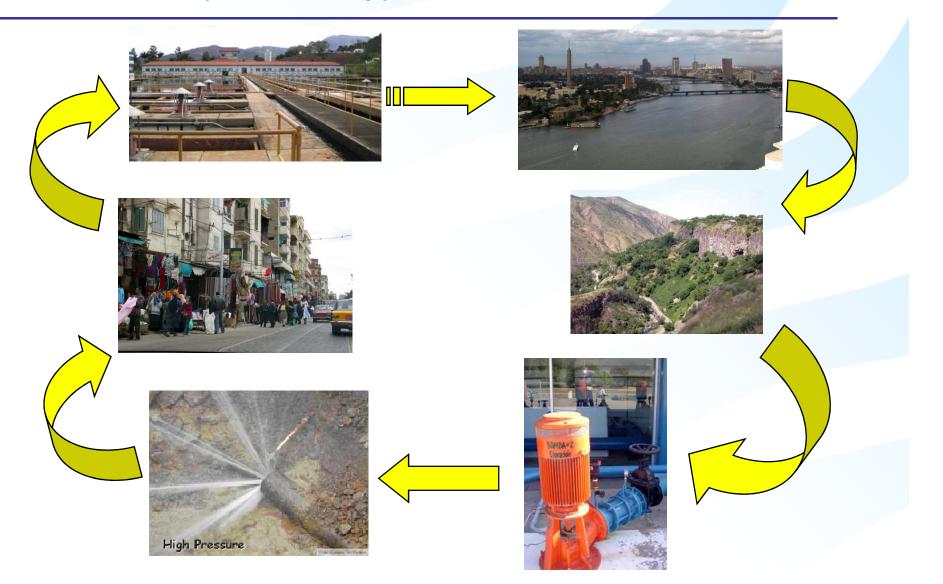
Watergy

Watergy Facts

- Every liter of water that passes through a system has a significant energy cost, compounded by the money invested to produce it.
- In developing countries, the cost of energy for supply of water may easily consume up to <u>half of a municipality's budget</u>.
- Energy expenditure is the <u>second largest cost after labour</u>.
- 1/3 of India's urban population lacks direct access to clean, affordable and reliable water services

Overview- Indian Municipal Sector

Second Largest Municipal System in the WorldIndia's Municipal sector consumes 4% of total electricity


Energy Consumption by Public Water Works
 2.57% relative to total Energy Consumption by all Sectors
 19,200 Million Units in absolute terms (2011-12)
 19,200 Million Units (projected for 2011-12)

Why Municipal Water Energy Efficiency ?

Water Supply is Energy-Intensive

Water Utility Systems that Use Energy

Stage	Operation	Energy-Using Systems	
Extraction	Deep well or surface	Pumping systems	
Treatment	Chemical & physical	Piston-type dosing pumps, pumping systems, fans, agitators, centrifugal blowers	
Between Source and Distribution	Sending drinking water to the distribution grid	Pumping systems	
Network	Booster pumping	Pumping systems	
Distribution	Distribution to end users	Pumping systems	
Storm and Sanitary	Piping of sewage, rainwater	Pumping systems	
Sewer Systems	Wastewater treatment and disposal	Pumps, fans, agitators, centrifugal blowers	
Support SystemsSupport functions of utility building(s)		Lighting systems, HVAC, etc.	

What is happening?

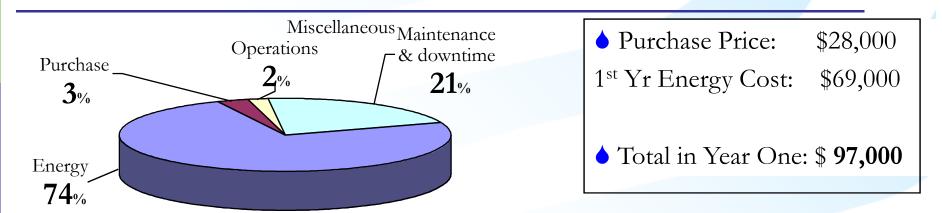
Energy Efficiency Challenges for Indian Cities

- Cities lack technical, managerial and financial capacity to implement projects
- Lack of metering & monitoring systems difficult to establish baseline
- Connected load energy consumption doesn't match with the actual energy bills
- High rates of unaccounted for water; unreliable water services
- No existing Government policy on reducing energy consumption in water delivery;
- Low confidence in PPP- Fair deals take time to set-up
- Procurement is based on 'first cost' (L1) NOT on Life Cycle Cost

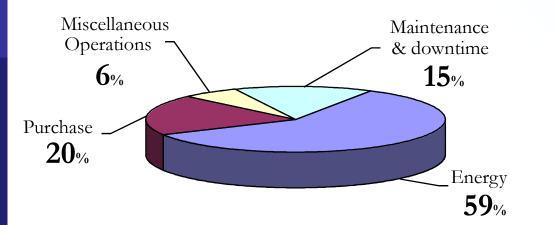
What's happeningreasons for Poor Efficiency

- Over design in view of catering future need or unrealistic use of factor of safety margin
- Changes in operating practices/schedules
- Efficient component NOT installed and/or operated properly
- Inadequate metering and monitoring facilities

Why Oversized Pump?


- Safety margins were added to the original calculations. Several people are involved in the pump buying decision and each of them is afraid of recommending a pump that proves to be to small for the job.
- It was anticipated that a larger pump would be needed in the future, so it was purchased now to save buying the larger pump later on.
- It was the only pump the dealer had in stock and you needed one badly. He might have offered you a "special deal" to take the larger size.
- You took the pump out of your spare parts inventory. Capital equipment money is scarce so the larger pump appeared to be your only choice.
- You purchased the same size pump as the one that came out of the application and that one was over sized also.

How Oversized Pump ?


- Required flow- 150 LPS after final calculation
- Design Engineer -10-15 % extra -12% (approx.)
- New Flow- 168 LPS
- Approval Committee keeping future demand into consideration Suggest 10 % more
- Revised Flow 185 LPS
- Purchasing Department In View of better commercial deal Supplier suggest higher capacity pump in Same price range- again flow increases by 10 - 12 % approx.
- Final Flow- 207 LPS
- Net Increase in Flow -38% at the time of Installation
- Final effect at operation end- (Throttling) to get reduced flow

Life Cycle Cost of an Efficient vs. Inefficient Pump

Life Cycle Costing: Inefficient Pump

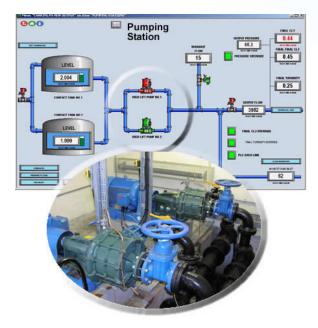
Purchase Price:	\$56,000		
 Purchase Price: 1st Yr Energy Cost: 	\$19,600		
• Total In Year One : \$75,600			

Life Cycle Costing: Energy Efficient Pump

Benefits - Municipal Energy Efficiency

- Extremely Cost Effective (20 to 40% saving potential)
 - This translates to at least 4000 MUs of energy savings
 - Simple Payback 2 to 3 years
 - Reduces the need for new infrastructure
 - Avoid the need for an additional capacity In National /State Interest
 - Reduced energy intensity will help climate change mitigation efforts
 - Reduce demand and supply gap at the national/state level
- **Improved Municipal Services**
 - Time to incorporate best practices
 - Better and more reliable services to community
 - Enhanced service level

Energy Efficiency Measures



Cost-Effective Interventions

- Pumps
- Leak Management
- Automated Controls

Pressure Management Metering & Monitoring

Typical Energy Audit Findings in a Pumping Station

- Inefficient Pumps & Motors
- Mismatch in Head and Flow
- Inadequate Pipe Sizing
- Excess Contract Demand
- System Over design

No/Low Cost Measures

- Surrendering of Excess Contract Demand (KVA)
- Improvement of Power factor (PF) (0.98)
- Improvement in O & M Practices
- Separation of LT & HT Load
- Minor Rectification in Pump
- Leak Detection and Repair
- Rescheduling of pumping operation
- Star Mode operation: Under-loaded motors

Medium Cost Investment Measures

- Installation of Capacitors Power factor improvement
- Impeller Trimming
- Replacement of inefficient Pumps
- Installation of Energy Efficient Motors
- Improvement in Piping Suction & Header
- Application of Soft Starters
- Application of VFDs for variable demands(Sewage systems)

Other Measures...

- In multiple pump operations, judiciously mix the operation of pumps and avoid throttling
- Have booster pump for few areas of higher head
- Reduction in pressure, if pressure is higher than required, reducing unnecessary load
- Pipeline rehabilitation

Energy Saving Options – Water Pumping

Category # 1 Electrical systems and motors	Category # 2 Pumping systems	Category # 3 Operational and other aspects
Fine tuning of contract demand	Suitable sizing of pumps	Leakage reduction
Penalties paid in lieu of maintaining low power factor	Replacing of pumps due to poor efficiency	Operating schedules / Practices of pumps
Segregation of Lighting and Fan loads	Replacing of the impellers	Parallel operation Vs individual operation of pumps
Switching "OFF" of transformers	Rectification of pumps	Changes in filling practices
Power factor improvement	Header and piping systems	
Clubbing of facilities		

Measures to Improve Efficiency and Typical Payback Periods

Measure	Function	PB (yrs)
Reduce peak use	Control demand during peak rate hours	0-2
Optimizing electric	Power factor optimization	0.8 - 1.5
installations	Reduction in voltage imbalance	1 - 1.5
Improved O&M	Routine pump maintenance	2
Improved O&M	Deep well maintenance and rehabilitation	1 - 2
	Automated controls	0 - 5
Production and	Replace oversized pumps with more	2-3
pumping	appropriate and efficient pumps	
rr8	Optimize pumping systems efficiencies	0.5 - 1.5
	Trim the impeller	0.1 - 1
	Use of highly efficient motors	2 - 3
Distribution system	Redesign of the grid	2-3
Distribution system	Control pressure and Sectoring;	1.5-3
	output in the networks variable speed drives;	1.5-5
Technologiaal	Flow recovery program regulating valves	0.5 - 3
Technological	End-use efficiency	1 - 3
improvement on the demand side	Metering systems	1 - 2
the demand side	Efficient wastewater technologies	1 - 2

Municipal EE Project Approach

Municipal EE Project Cycle

Stage 1

Program conceptualization

*Top level by in and commitments *Discussions with stakeholders *Assessment of project size *Initial basic data and inventory details *Implementation strategy

Procurement

- *Expression of interest -Evaluation -Short listing
- * Development of RFP and model performance contract
- *Issue RFP -Technical and financial evaluation *Select Implementer -Award contract

Investment Grade Audit

Stage 2

- *Start IGA study
- -Draft IGA report submission -IGA report review by project committee -Draft report discussions with Implementer -Fine tuning *Final report submission -Freezing and acceptance of EE proposals -Baseline and M&V

methodology

Financing and Implementation

*Signing Energy Performance Contract *Arrange for 3rd party financing *Establish TRA/ESCROW account *Procure equipment and services *Post installation *M&V report- (Hiring of 3rd party verifier) *Repayment *Training

Case Studies

Energy Saving Potential & Implementation

Energy Saving Potential in Four Towns in Karnataka

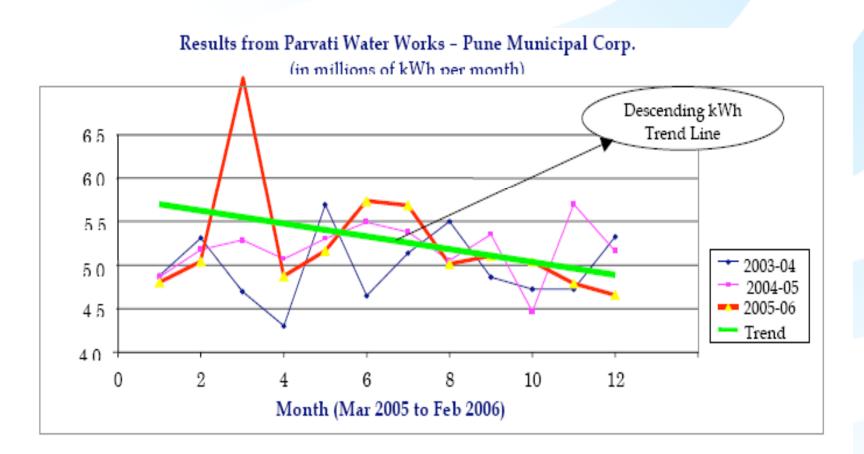
Type of Proposal	Nos.	Saving Potential, Rs. Lakh	Investment Required, Rs. lakh
No Cost (immediate)	20	67	Nil
Short Term (1 -12 months)	18	178	78 (Payback: 5 months)
Medium Term (1 – 2 years)	6	63	77 (Payback: 15 months)
Total	44	308	155 (Payback: 6 months)

Mysore, Bellary, Hubli – Dharwad, Tipture-Arsikere

Energy Saving Potential in Two Towns in Andhra Pradesh

Type of Proposal	Nos. of EE Measures	Saving Potential, Rs. Lakh	Investment Required, Rs. lakh
No Cost (immediate)	10	31.1	0
Short Term (1 -12 months)	6	31.0	20 (Payback: 8 months)
Medium Term (1 – 2 years)	2	1.8	2.5 (Payback: 17 months)
Total	18	63.9	22.5 (Payback: 5 months)

Vijaynagarm, Karimnagar



Energy Saving Potential Pune Municipal Corporation

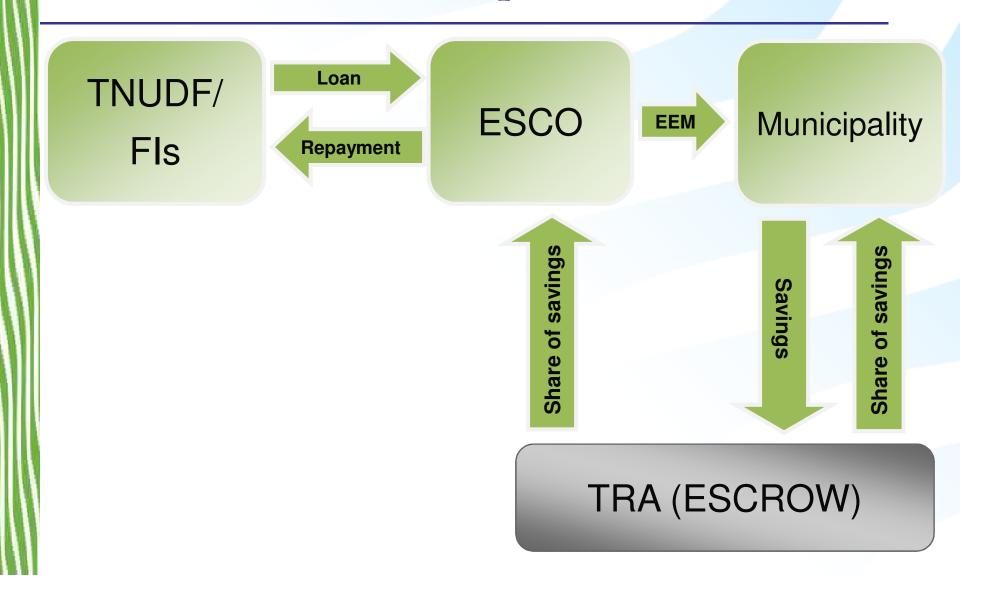
Type of Proposal	No. of EE Measures	Annual Saving Potential Rs. Lakh	Cost of Implementation Rs. Lakh	Payback Period, months
Short term,	11	103.7	32	4
Medium term	4	42.1	55	16
Total	15	145.8	87	8

Pune Municipal Corporation

Additional 10% Water Delivered

Tamil Nadu - Highlights

- Partnership with Tamil Nadu Urban Infrastructure Financial Services Limited (TNUIFSL), CMA, ULBs
- Implementing energy efficiency projects in 29 municipalities in water pumping and street lighting
- 2 Energy Service Companies implementing the project


- Bid Evaluation Process:
 - EOI 13 Responses
 - RFP issued to 8
 - Responses to RFP 6
 - LOI issued to 2 ESCOs
- IGA reports in discussion
- EPC between ULBs and ESCOs will be signed soon

Estimated Cost savings

US \$ 800,000/year

Tamil Nadu Project – Implementation Model

Other Projects

- Delhi Jal Board
 - Low and medium cost measures implemented
 - Accruing Annual Savings of Rs. 7 Crore
 - Established Energy Management Cell
- Municipal Corporation of Greater Mumbai (MCGM)
 - Largest urban water supply system in India
 - Population 11.9 million
 - 39 pumping station (152 + pumps) and 36 booster pumping stations
 - 2005-06 Energy consumptions- 250 Million kWh units (approx.)
 - Annual Energy bill Rs. 815 million +
 - Projected Annual Energy savings-197 million kWh
 - CO2 emission reduction- 175,238 Metric tones per year

Puducherry UT Water Supply System

Puducheery UT Water Supply System

- 4 key circles (Puducherry , Karaikal , Mahe , Yanam)
- Water supply managed by Public Water Works
- Reliance on Ground Water Resources (Bore wells)

As per Central Electricity Authority(CEA) – 18th EPS Data

- Water Works Energy Consumption

▶ 2010-11- 37.68 Million Unit (MU)

► 2013-14 - 55.18 MU

- ▶ 2021-22 107. 55 MU (approx. 300% growth)
- Estimated Energy Saving Potential @ 20-25% = 13.7 MU (for year 2013-14)

Present Per Capita Supply and Sewage Generated

Sl. No	Particulars	Details
1	Urban areas	135 LPCD
2	Rural areas	70 LPCD
3	Sewage generation	60 MLD
4	Sewage treated by PWD*	13 MLD
	Mode of disposal	Sea

*Modernization and expansion of existing Sewage Treatment Plants of Public Works Department with underground sewage transport facilities are in progress.

Policy Framework at the UT level

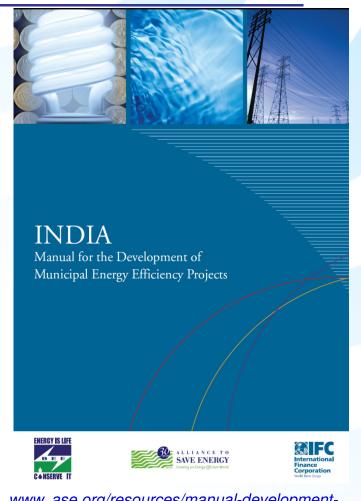
Puducherry Water Policy 2012 - State Water Policy with an operational action plan in order to achieve the desired objectives

A few key highlights

- Water Resource Planning, Institutional Mechanism
- Project Planning, Monitoring of Projects
- Ground Water Development
- Rain Water Harvesting
- Drinking Water
- Financial and Physical Sustainability
- Private Sector Participation
- Conservation
- Climate Change
- Performance Improvement, Training, Maintenance and Modernization

Lesson Learnt & Way Forward

- Quality of data plays a crucial role in delivering performance
- Post project M&V is key to success
- EE projects should be a part of infrastructure development projects
- Performance related Uncertainties can't be completely eliminated but reduced
- Most of the Cities doesn't have capacity and capabilities to handle larger EE projects – needs to create dedicated energy management cell
- Project development time needs to be cut down


Lesson Learnt & Way Forward

- High turnover among government decision makers and staff can stall projects – needs institutlization of efforts
- Capacity of the project management committee members should be developed to enable them to carry out assessments and reviews
- Need to develop cost-effective M&V strategies to mitigate the risk associated with projects
- Capacity need to be build for M&V agency

Guidelines to Develop and Implement Municipal EE Projects

- Jointly released with Bureau of Energy Efficiency
- Targets:
 - Municipalities/ULB
 - EE services providers
 - Financial institutions
- Contains:
 - Step by step guidelines
 - Templates (RFPs, PCs, etc)

www. ase.org/resources/manual-developmentmunicipal-energy-efficiency-projects

Define energy efficiency as a "Requirement" Not as an "Option" or "Choice"

For More Information:

Pradeep Kumar Director -India Office Alliance to Save Energy Bangalore, India +91-9845775008 pkumar@ase.org

www.ase.org or www.watergy.org